
Stochastic model of evolving populations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1998 J. Phys. A: Math. Gen. 31 417

(http://iopscience.iop.org/0305-4470/31/2/004)

Download details:

IP Address: 171.66.16.122

The article was downloaded on 02/06/2010 at 06:51

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/31/2
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.31 (1998) 417–429. Printed in the UK PII: S0305-4470(98)84712-4

Stochastic model of evolving populations

D Bonnaz and A J Koch
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Abstract. A general formalism is described which allows the study of a wide range of
stochastic problems related to evolution. We apply it to the treatment of the evolution of a
finite population in the presence of mutations and selective advantage. The results are close to
those of Eigen and Schuster’s error threshold model, in the presence of randomly drawn sterile
sequences. The theoretical results are in excellent agreement with numerical simulations.

1. Introduction

Eigen’s (1971) deterministic model for the prebiotic evolution of macromolecules has had
a considerable impact on the way we consider evolutionary problems from a theoretical
standpoint. It is an outstanding example of what a model can bring to the understanding of
biological phenomena. For instance, it shone light onto the existence of anerror threshold:
in the presence of mutations, information is conserved in a population of macromolecules
only if the mutation rateµ is smaller than a critical valueµc. Beyond the error threshold,
Eigen’s model predicts that the concentrations of all possible types of macromolecules
become equal. This result is, however, unrealistic for the following reason. Consider
macromolecules made of 200 monomers which can be of four types (A, T , G andC). The
number of distinct molecules is then equal to 4200 ≈ 10120; this number largely exceeds
the number of baryons in the known universe (≈1080). This shows that, for biologically
relevant parameters, the number of distinct macromolecules which could, in principle, be
synthesized is tremendously larger than the number of macromolecules which can effectively
be produced. As a consequence, the overwhelming majority of possible macromolecules
are not represented in the population and never will be.

Although Eigen and co-workers (Eigen and Schuster, 1977, Eigenet al 1989, Schuster
and Svetina 1988) are conscious of this problem, they have—to our knowledge—never
proposed a modified version of their theory in order to take into account the finiteness
of biological populations, even if Nowak and Schuster (1989) have proposed numerical
simulations of Eigen’s system in small populations.

Modelling evolving populations is of current interest; several recent papers deal with this
topic (see Woodcock and Higgs 1996 or Prügel–Bennett 1997 and references therein). The
model presented hereafter was originally developed in order to describe the evolution of a
population composed of a finite number of individuals. Due to its probabilistic formulation,
it is well suited to study stochastic effects in finite populations. Furthermore, we introduceab
initio the fact that a given fraction of individuals of the population are unable to reproduce.
If, for instance, the model is applied to self-reproducing macromolecules, this takes into
account the well known experimental fact that most of the RNA molecules cannot self-
replicate (Joyce and Orgel 1993, Eigen 1993).
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The formalism presented here is adapted to the description of biological populations
submitted to mutations and selection. From a theoretical point of view, this method lies
midway between Eigen’s deterministic model (which does not take care of the finiteness
of the population size) and Kimura’s (1962) theory of genetic drift which originally does
not take mutations into account and only considers a small number of genotypes. The
method is essentially based on the idea that the mean value of any quantity linked to
the population’s genomic distribution can be evaluated by calculating its average change
between two successive generations of an arbitrary population and by weighting the result
over the probability of occurrence of the former generation.

This paper is organized as follows. We shall first develop the formalism of the method.
Once the theoretical framework is clarified, we shall study a model with selective advantage
and lethal or sterile genotypes. The distribution of sterile genotypes introduces a kind of
disorder in the sequence space. We shall discuss both cases of low disorder (few sterile
genotypes) and strong disorder (few fertile genotypes).

2. Theoretical basis of the stochastic model

Consider a populationP composed ofN individuals which are arbitrarily numbered from 1
to N to distinguish them. The population is supposed to begetN children which will form
the populationP ′ of the next generation.

Each individual is characterized by its genome. To fix the ideas, we shall admit that a
genome is a binary sequence composed ofν monomers. It can be represented by a vector
x = {x1, x2, . . . , xα, . . . , xν} with xα ∈ {−1,+1} (1 6 α 6 ν) belonging to the sequence
spaceX . This setX of all distinct sequencesx contains 2ν elements.

We shall noteG the set of genomes of all individuals belonging toP: G = {xi |1 6
i 6 N} ∈ XN wherexi is the genome of individuali of the population.G is the gene pool
of P (Maynard Smith 1983). Hereafter quantities with a prime (such asx′i) are related to
the offspring populationP ′, while quantities without a prime (asxi) concern the parental
populationP.

Let us introduce the probabilityW(G ′,G) to get the gene poolG ′ = {x′i |16 i 6 N}, if
one generation earlier the pool wasG. We have obviously∑

G ′∈XN
W(G ′,G) = 1

where the sum is taken over all possible poolsG ′. W(G ′,G) describes the reproduction
of the population; it takes care of effects such as selective advantages of some genotypes
compared with others, or of mutations occurring during the replication of the genomes. We
restrict ourselves to time-independentW(G ′,G).

By usingW(G ′,G), it is possible to calculate the probabilityP(G ′, t + 1) of having
the poolG ′ at generationt + 1 if the probabilityP(G, t) of observingG at generationt is
known:

P(G ′, t + 1) =
∑
G∈XN

W(G ′,G)P (G, t). (1)

Let F(G) be an arbitrary function ofG. We define the following two quantities:

F(t) =
∑
G∈XN

P (G, t)F (G) (2)

〈F 〉(G) =
∑
G ′∈XN

W(G ′,G)F (G ′). (3)
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F(t) corresponds to theaverage valueof F on a population at generationt . Similarly,
〈F 〉(G) is theexpected valueof F estimated on a population if, one generation earlier, the
gene pool wasG. By using (1)–(3), we see that

F(t + 1) = 〈F 〉(t). (4)

If the system reaches a stationary state (whereP(G, t + 1) = P(G, t)), then the preceding
relation leads to:

F(t) = 〈F 〉(t). (5)

GivenW(G ′,G), this relation enables us to evaluate the average value of any functionF(G).
Now let us precise the form ofW(G ′,G). The evolution of the population is given by

the link between two successive generations. We make the following hypotheses which are
close to those used by Serva and Peliti (1991).
• At each generation, the population is formed byN individuals.
• Successive generations do not overlap: all parents die before their offspring reproduce.
• Let G be the parental pool andG ′ be the offspring pool. The offspring population

is obtained from the parental one byN independent reproduction events. Consequently,
W(G ′,G) can be decomposed as

W(G ′,G) =
N∏
j=1

w(x′j ,G) (6)

wherew(x′j ,G) is the probability that the individualj belonging toP ′ gets the genomex′j
if the parental gene pool wasG. Of course thew(x′j ,G) are normalized:∑

x′j∈X
w(x′j ,G) = 1. (7)

In order to specifyw(x′,G)more precisely, we consider for instance an asexual reproduction
mode of a haploid species†.

Let us suppose that a given fitnessS(x) > 0 is associated to each genotypex ∈ X : an
individual with genotypex is expected to begetS(x) children. So, if we callv(x′,x) the
probability to get the genomex′ as a copy (with eventual mutations) ofx, we have

w(x′,G) = 1∑N
j=1 S(xj )

N∑
i=1

S(xi )v(x
′,xi ) (8)

since theN possibilities of drawing a particular parentxi (1 6 i 6 N ) are mutually
exclusive events. The probabilitiesv(x′,x) verify the normalization relation∑

x′∈X
v(x′,x) = 1.

The decomposition (6) ofW(G ′,G) has a practical interest. Consider a functionF(xλ)
depending on the genomexλ of a single individualλ. The average value〈F 〉(G) is given
by

〈F 〉(G) =
∑
x′λ∈X

w(x′λ,G)F (x′λ). (9)

† As noticed by Kimura (1962), under certain conditions such a gene pool model also describes sexually
reproducing populations. Similarly, the very same model can also be applied to haploid as to polyploid populations.
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More generally, ifF depends on the genomesxλ1, xλ2 . . . xλk with k distinct but arbitrarily
chosen indicesλ1,. . .,λk. The average value〈F 〉(G) is then given by

〈F 〉(G) =
∑
x′λ1
∈X

∑
x′λ2
∈X
· · ·

∑
x′λk∈X

( k∏
a=1

w(x′λa ,G)
)
F(x′λ1

, . . . ,x′λk ). (10)

Equations (5) and (10) form the core of the method used here. It is possible to evaluate
the time evolution of any function if the transition probabilitiesw(x′β,G) are known.

3. Evolution in the presence of selective advantage

Let us now apply the previous formalism to the evolution of a populationP of N haploid
individuals reproducing asexually. We suppose that the different genomes can be sorted in
two classes: the fertile and the sterile (or lethal) ones and we assume that both are uniformly
distributed in the sequence space. To take this into account, we characterize once for all
(quenched disorder) each genotypex ∈ X by the value of a fertility functionf (x) in the
following way:

f (x) =
{

1 (for fertile) with probabilityp

0 (for sterile) with probability 1− p.

(See also Peliti and Bastolla (1994)). A second element is directly inspired from Eigen’s
models. We shall assume that the genotype1 = (1, . . . ,1) has a selective advantages
compared with all other genotypes inX . Naturally,f (1) = 1 (it would be nonsense to give
a selective advantage to a lethal genotype). Given the parental populationP, the possible
values that the genomex′j of an arbitrary individual belonging to the offspring population
P ′ are enumerated below with their respective probabilities:

x′j =



xi
f (xi )
nf+sno (1− µν)

Mαxi
f (xi )
nf+sno µ

1 sn0
nf+sno (1− µν)

Mα1 sn0
nf+sno µ

(11)

with 1 6 i 6 N . The various terms appearing therein will be explained below. For each
monomerxαi of xi , there is a small probabilityµ to be badly copied. We assume here that
µ is small enough so the eventuality of multiple errors during the replication ofx can be
neglected.Mαxi corresponds to the genome obtained by making a single mutation inxi
at positionα ∈ {1, . . . , ν} during its replication. The probabilities listed in (11) correspond
to the termS(xi )v(x′,xi ) appearing in (8). The probability to draw a sterile individual is
zero.

In expression (11),nf corresponds to the number of fertile individuals in the parental
population andno to the number of parents with genotype1. By definition,nf andno are
respectively equal to

nf =
N∑
i=1

f (xi ) and no =
N∑
i=1

δ(xi − 1)

where

δ(x− 1) =
ν∏
α=1

δx
α

1 .
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δx
α

1 is the Kronecker delta. Equation (11) only makes sense ifnf > 0, which means that
there is at least one fertile individual in the parental population; if this was not the case,
the population would become extinct.

By assuming that the population has reached a dynamical equilibrium, one determines
without difficulties the mean numbernf of fertile individuals andno, the mean number of
individuals bearing the genomic sequence1; nf andno are solutions of

〈nf 〉(t) = nf (t) and 〈no〉(t) = no(t).
Neglecting back-mutations on1 and fluctuations for the calculus ofno, the solutions of
these equations are respectively

nf = N [1− (1− p)µν] (12)

no =

N
(

1− s + p
s

µν

)
if µ < µc = s

ν(s+p)

0 otherwise.
(13)

The solution forno shows that, according to the mutation rateµ, the population dynamics
presents essentially two distinct behaviours.
• If µ < µc = s/(ν(s + p)), there are, on average,no > 0 individuals belonging to

the master type1. We shall see hereafter that the whole population, although submitted to
genetic drift, remains localized in the sequence space in the neighbourhood of1.
• For µ > µc, the mutational load is so heavy that the genotype1, despite its selective

advantage, disappears; if1 appears by chance, it will vanish some generations later, so that
no = 0 if µ > µc.

The mean fitnessfm of the population is defined by:

fm = 1

N

N∑
i=1

[1+ sδ(xi − 1)]f (xi ).

Using (12) and (13), one obtains for its average

fm =
{
(1+ s)(1− µν) if µ < µc = s

ν(s+p)
[1− (1− p)µν] otherwise.

fm is a continuous and decreasing function ofµ. If µ < µc, fm does not depend on
the fractionp of fertile genotypes: the decrease of mean fitness due to the presence of
sterile individuals is exactly compensated by the increase offm due to the existence of fitter
individuals with genotype1. This result, although surprising, is common, see Higgs (1994)
for other examples. The presence of lethal genotypes has another important consequence: it
increases the value ofµc, allowing larger mutation rates in the population without affecting
fm.

To study the change in the population dynamics aroundµc, we have calculated the
average varianceσ 2 of the population and the mean square shift〈(1X)2〉 of the mean
genotypeX = (1/N)

∑N
i=1xi between two successive generations. To determine these

quantities, we shall need the average values of the following five terms:
∑
xi ,

∑
f (xi )xi ,∑

xixj ,
∑
f (xi )xixj and

∑
f (xi )f (xj )xixj . Detailed calculations will only be given

for the first two expressions; the other ones are found by using similar reasoning. Let us
start with two remarks.
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• As written above, the fertile genotypes are uniformly distributed with frequencyp in
the sequence spaceX . So, a term like

ν∑
α=1

f (Mαxj )Mαxj

which will often appear in the calculations can be approximated by its mean value on the
phase space (as if we were in the presence of annealed disorder):

ν∑
α=1

f (Mαxj )Mαxj ≈ (ν − 2)pxj .

This approximation is good as long asνp � 1 (ν is the number of first neighbours of an
arbitrary sequencex in X andνp corresponds to the average number of fertile neighbours
of x). If νp < 1, this approximation becomes doubtful.
• We shall also estimate the fluctuations ofnf and no by evaluating the variances of

these two quantities. We obtain that fornf the fluctuations are of order
√
N . For no the

calculations are more delicate. Supposing that the fluctuations are small compared withno,
we obtain that they are also of order

√
N . Thus, with the assumption thatN is sufficiently

large, we can considernf and no as constants whose values are given by (12) and (13)
respectively. Hereafter, we shall writenf instead ofnf andno rather thanno in order to
simplify the notations. The most visible finite-size effect is the shift of the error threshold.
Indeed a population withno of order

√
N is likely to escape from the master genotype1 in

few generations. Consequently, we deduce from (13) thatµc has to be replaced byµc(N)
determined by

µc(N) = µc − Cµc√
N

whereC is a constant. On the other hand, numerical simulations show that the lifetime
of a master population withno of orderN increases exponentially withN , so it is very
improbable to observe any extinction during one experiment. This is why one is justified
to talk of an error threshold despite the finiteness of the lifetime of the master sequence.

So, let us begin with the evaluation of the average value of
∑
f (xj )xj . The transition

probabilities are given by (11).〈 N∑
i=1

f (x′i )x
′
i

〉
=

N∑
i=1

1

nf + sno
N∑
j=1

[(1− µν)f (xj )xj

+µ
ν∑
α=1

f (Mαxj )Mαxj ] · (1+ sδ(xj − 1)) · f (xj )

= nf − 2µNp

nf + sno

[
sno1+

N∑
j=1

f (xj )xj

]
.

By using (5), one obtains the average value of this quantity:

N∑
i=1

f (xi )xi = nf − 2µNp

sno + 2µNp
sno1.

We have also for eachi

〈x′i〉 =
1− 2µ

nf + sno

[
sno1+

N∑
j=1

f (xj )xj

]
(14)
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from which we deduce that
N∑
i=1

xi = (1− 2µ)N

nf + sno

[
sno1+

N∑
j=1

f (xj )xj

]
.

Let us now give, with less details, the derivation of the average value of∑
f (xi )f (xj )xixj :〈 N∑
i=1

N∑
j=1

f (x′i )f (x
′
j )x
′
ix
′
j

〉
= νnf +N(N − 1)

×
{ N∑
i=1

[
(1− µν)f (xi )xi + µ

ν∑
α=1

f (Mαxi )Mαxi

]

× (1+ sδ(xi − 1)f (xi )
nf + sno

}2

= νnf + N − 1

N

(
nf − 2µNp

nf + sno

)2

×
[
s2n2

oν + 2sno1
N∑
i=1

f (xi )xi +
N∑
i=1

N∑
j=1

f (xi )f (xj )xixj

]
.

Using this result and equation (5), one gets:

N∑
i=1

N∑
j=1

f (xi )f (xj )xixj =
νNnf + (N − 1)

(
nf−2µNp
nf+sno

)2 (
1+ 2 nf−2µNp

sno+2µNp

)
s2n2

oν

N − (N − 1)
(
nf−2µNp
nf+sno

)2 .

On the same scheme, one evaluates the two remaining quantities:

N∑
i=1

N∑
j=1

f (xi )xjxj = νnf + (N − 1)
(1− 2µ)(nf − 2µNp)

(nf + sno)2

×
[
s2n2

oν + 2sno1
N∑
i=1

f (xi )xi +
N∑
i=1

N∑
j=1

f (xi )f (xj )xixj

]
N∑
i=1

N∑
j=1

xixj = νN +N(N − 1)

(
1− 2µ

nf + sno

)2

×
[
s2n2

oν + 2sno1
N∑
i=1

f (xi )xi +
N∑
i=1

N∑
j=1

f (xi )f (xj )xixj

]
.

With these results, there is no difficulty in evaluating〈(1X)2〉 andσ 2. The mean square
shift is equal to the average of the expected value of the squared difference between the
mean genotypeX ′ of the offspring population and the mean genotypeX of the parental
one:

〈(1X)2〉 = 〈(X ′ −X)2〉.
By expanding the right-hand side of this expression, we have:

〈(1X)2〉 = 1

N2

[ N∑
i=1

N∑
j=1

〈x′ix′j 〉 − 2
N∑
i=1

N∑
j=1

〈x′i〉xj +
N∑
i=1

N∑
j=1

xixj

]
.
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By using

N∑
i=1

N∑
j=1

〈x′ix′j 〉 = Nν +
∑
i 6=j
〈x′i〉〈x′j 〉

and (14), we obtain an expression for〈(1X)2〉 in which all terms have been calculated
above. Since the mathematical expression of this result is rather long, we do not give it
explicitly here; however, in the absence of selective advantage (s = 0) and in the situation
p = 1, 〈(1X)2〉 is given by:

〈(1X)2〉 = 4µν

N − (N − 1)(1− 2µ)2
. (15)

The value ofσ 2 is calculated in the same way:

σ 2 = 1

N

N∑
i=1

(xi −X)2

= ν −X2

= ν − 1

N2

N∑
i=1

N∑
j=1

xixj .

In the simple cases = 0 andp = 1, one finds:

σ 2 = (N − 1)(1− µ)〈(1X)2〉. (16)

For an exhaustive study of this simple case see Higgs and Derrida (1991, 1992) and Derrida
and Peliti (1991).

The results are presented in figure 1. It can be observed in figure 1(b) that the genomic
variance remains tiny forµ < µc: the mean genotype remains confined in a small region
of the sequence spaceX , in the vicinity of the master genotype1; the genotypes present
in the population are slightly dispersed around1. Moreover, the mutation rate being small,
the mean square shift〈(1X)2〉 is also small (see figure 1(a)).

For µ > µc, the behaviour is very different. The dominant genotype1 is no
longer represented in the population; as a consequence, the genomic distribution broadens;
however, the genomes remain localized in a small portion of the sequence space. Between
two successive generations, there is an important random drift of the mean valueX of the
genotype in sequence space: the mean genotype wanders the sequence spaceX . This is
illustrated in figure 1(c). Figure 2 presents〈(1X)2〉 andσ 2 versus the fractionp of fertile
genotypes inX .

The change of dynamical behaviour aroundµc is closely related to Eigen’s error
threshold. In Eigen’s model, forµ < µc, the concentration of the various sequences are
notably higher than zero only for sequences close to the fittest one (the master sequence) and
the stationary distribution of frequencies is called the quasispecies; we have the very same
behaviour in the present example. Forµ > µc, Eigen’s model predicts a homogeneous
state: all sequences are equally represented in the system; our model predicts, forµ > µc,
that the population remains grouped in the sequence space around the mean genotypeX
but that the latter one wanders the sequence spaceX . In this respect, the present model
corrects the unrealistic behaviour of Eigen’s model mentioned in the introduction.

As can be seen in figure 1, the predicted curves fit the numerical data well, except in the
transition region aroundµc. Forµ ≈ µc, the fluctuations ofno can no longer be neglected as
was done in the derivation of (13). This explains why the theoretically predicted threshold
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Figure 1. The evolution ofN = 200 individuals is simulated. The genomes are built up with
ν = 30 monomers; each monomer has a probabilityµ to be badly copied during the duplication
of the genome. The fraction of fertile genotypes isp = 0.8 and the genotype1 has a selective
advantage ofs = 2. Graph (a) is a plot of 〈(1X)2〉, the mean square shift of the mean
genotype between two successive generations, versusµ. In (b), the average varianceσ 2 is
plotted as a function ofµ. (c) The average Hamming distanced between the mean genotype
X and the favoured genotype1 as a function ofµ; for large values ofµ, the average Hamming
distance saturates atν/2. Dots correspond to numerical data, while the full curves represent the
theoretical results.

overestimatesµc. Another deviation between theoretical and numerical results can be seen
in figure 2: for small values ofp, the analytical prediction of〈(1X)2〉 becomes bad. This
is mainly due to the following reason. Each genotype inX hasν nearest neighbours among
which, on average,νp are fertile genotypes. If the average number of fertile neighbours
becomes too small, fluctuations of the local density of fertile genotypes inX—which are
neglected in our ‘mean-field’ approach—begin to play an important role. It is, however,
possible to improve the theoretical results for small values ofp by specifying explicitly
the distribution of fertile and sterile genotypes around the favoured genotype1. The next
section is devoted to the study of this particular case.
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Figure 2. A system ofN = 200 individuals with genomes of lengthν = 20 is simulated. The
mutation rate is equal toµ = 0.0465 and the genotype1 has a selective advantage ofs = 10.
Graph (a) is a plot of the mean square shift of the mean genotype between two successive
generations as a function of the fractionp of fertile genotypes in the sequence spaceX . In
(b), the variance is plotted versusp. Dots correspond to numerical data, while the continuous
lines correspond to theoretical results. Due to the large value ofs, the theoretical value for the
critical mutation rateµc agrees fairly well with the one obtained numerically.

4. The smallp limit

For small values ofp, the quenched disorder is explicitly taken into account in the
calculations. We consider, in sequence spaceX , only the neighbourhood of the master
genotype. The population evolves according to the following rules:

x′ =



1 (1+s)no
nf+sno (1− µν)

Mα1 (1+s)no
nf+sno µ

Vλ
nλ

nf+sno (1− µν)
MαVλ

nλ
nf+sno µ.

(17)

In this expression,Vλ for λ = 1, . . . , 3 6 ν are the genotype of the3 first neighbours of
1 which are fertile. The population ofVλ is denoted bynλ. The draw of another fertile
sequence is not taken into account since it is assumed that its population is negligible.
Evidently, it is possible to refine the model by considering them. We make the additional
assumption that, for allλ, nλ ≡ n. The study of this model follows the same lines as the
preceding one. Thus, we begin by calculating the average quantitiesno, nf and n in the
large t limit. Neglecting fluctuations in the relationsno = 〈no〉, n = 〈n〉 and using the
definition of nf lead to the equations:

no(nf + sno) = N [(1+ s)(1− µν)no + µ3n]

n(nf + sno) = N [(1− µν)n+ (1+ s)µ3no]
nf = no +3n.

(18)

Back-mutations on1 are no longer neglected. These equations are easily solved in the large
ν limit remembering that3 is at most of orderν. The solution writes (forµ small enough):

nf = N(1− µν +3µ)
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no = N
(

1− µν − 1

s
3µ

)
n = N 1+ s

s
µ.

The mean fitness takes, on average, the same valuefm = (1 + s)(1 − µν) as in the
former model. We neglect fluctuations of the populations in (17) by considering that they
always take their mean values. The calculation of the quantities which deserve mention is
straightforward since we have simply (no bar has been omitted):

〈xi〉 = xi = (1− 2µ)

(
1− 2

3

ν

n

nf + sno

)
1. (19)

The value of the momentxixj is easily obtained:

xixj =

 (1− 2µ)2
(

1− 2
3

ν

n

nf + sno

)2

if i 6= j

ν otherwise.

Relation (19) between the average and expected values implies that the expression for
〈(1X)2〉 simplifies to:

〈(1X)2〉 = 2

N
(ν − x1x2).

In the largeν limit, we obtain finally:

〈(1X)2〉 = 8µν

N
+ 8µ3

Ns(1− µν) (20)

and

σ 2 = N − 1

N
〈(1X)2〉.

It remains to take the average over the disorder. For instance, it consists of replacing3

with pν in (20). The conclusion is that we can commute the average over the disorder
with the other averages, but it is only true asν � 1. This validates the annealed disorder
approximation in the former model. Numerical simulations confirm the validity of this
approach, see figure 3 for an illustration.

5. Discussion

We have presented a method allowing us to calculate the time evolution of a population
in the presence of selective advantage, sterile genotypes and mutations. This formalism
can be viewed as an extension of Kimura’s diffusion models. The population dynamics
obtained with this approach are close to the one observed in Eigen’s system of self-
replicating macromolecules. There exists a critical valueµc for the mutation rateµ; its
valueµc = s/ν(s + p) depends essentially on two parameters: the selective advantages

of the favoured genotype and the fractionp of fertile genotypes in sequence space. For a
small selective advantages, the existence of sterile sites increases considerably the value
of µc.

If µ < µc, the population remains confined in the neighbourhood of the genome having
the highest selective advantage; ifµ > µc, the population no longer remains fixed, but
wanders the sequence space. In opposition to what happens in Eigen’s system (where
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Figure 3. Comparison of numerical computations with theoretical results for a system with
selective advantage and strong quenched disorder. The evolution of a population composed of
N = 104 (chosen large enough in order to limit the effect of the fluctuations) individuals is
simulated. The genomes are formed ofν = 25 monomers. The genotype1 has a selective
advantage ofs = 0.2. Each monomer has a probabilityµ = 0.02 to be badly copied during the
duplication of the genome. This graph is a plot of the average value of〈(1X)2〉 over many
experiments as a function ofp. Dots correspond to numerical data obtained by simulating a
population obeying the rules defined in (17); the full curve corresponds to the theoretical result.

the system becomes homogeneous ifµ > µc), the wandering population always keeps a
structure: due to the reproduction mode, all individuals remain grouped in sequence space.

Finally, we have also shown that the study in the case of quenched disorder can be done
as if we were in the presence of annealed disorder, at least asν is large enough.
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