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Abstract. A general formalism is described which allows the study of a wide range of
stochastic problems related to evolution. We apply it to the treatment of the evolution of a
finite population in the presence of mutations and selective advantage. The results are close to
those of Eigen and Schuster’s error threshold model, in the presence of randomly drawn sterile
sequences. The theoretical results are in excellent agreement with numerical simulations.

1. Introduction

Eigen's (1971) deterministic model for the prebiotic evolution of macromolecules has had
a considerable impact on the way we consider evolutionary problems from a theoretical
standpoint. It is an outstanding example of what a model can bring to the understanding of
biological phenomena. For instance, it shone light onto the existence efa@rnthreshold

in the presence of mutations, information is conserved in a population of macromolecules
only if the mutation ratew is smaller than a critical valug.. Beyond the error threshold,
Eigen’s model predicts that the concentrations of all possible types of macromolecules
become equal. This result is, however, unrealistic for the following reason. Consider
macromolecules made of 200 monomers which can be of four type¥,(G andC). The
number of distinct molecules is then equal %~ 10%% this number largely exceeds

the number of baryons in the known universel(®®). This shows that, for biologically
relevant parameters, the number of distinct macromolecules which could, in principle, be
synthesized is tremendously larger than the number of macromolecules which can effectively
be produced. As a consequence, the overwhelming majority of possible macromolecules
are not represented in the population and never will be.

Although Eigen and co-workers (Eigen and Schuster, 1977, Etjah 1989, Schuster
and Svetina 1988) are conscious of this problem, they have—to our knowledge—never
proposed a modified version of their theory in order to take into account the finiteness
of biological populations, even if Nowak and Schuster (1989) have proposed numerical
simulations of Eigen’s system in small populations.

Modelling evolving populations is of current interest; several recent papers deal with this
topic (see Woodcock and Higgs 1996 otifel-Bennett 1997 and references therein). The
model presented hereafter was originally developed in order to describe the evolution of a
population composed of a finite number of individuals. Due to its probabilistic formulation,
it is well suited to study stochastic effects in finite populations. Furthermore, we intrattuce
initio the fact that a given fraction of individuals of the population are unable to reproduce.
If, for instance, the model is applied to self-reproducing macromolecules, this takes into
account the well known experimental fact that most of the RNA molecules cannot self-
replicate (Joyce and Orgel 1993, Eigen 1993).
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The formalism presented here is adapted to the description of biological populations
submitted to mutations and selection. From a theoretical point of view, this method lies
midway between Eigen’s deterministic model (which does not take care of the finiteness
of the population size) and Kimura’s (1962) theory of genetic drift which originally does
not take mutations into account and only considers a small number of genotypes. The
method is essentially based on the idea that the mean value of any quantity linked to
the population’s genomic distribution can be evaluated by calculating its average change
between two successive generations of an arbitrary population and by weighting the result
over the probability of occurrence of the former generation.

This paper is organized as follows. We shall first develop the formalism of the method.
Once the theoretical framework is clarified, we shall study a model with selective advantage
and lethal or sterile genotypes. The distribution of sterile genotypes introduces a kind of
disorder in the sequence space. We shall discuss both cases of low disorder (few sterile
genotypes) and strong disorder (few fertile genotypes).

2. Theoretical basis of the stochastic model

Consider a populatiof? composed oV individuals which are arbitrarily numbered from 1
to N to distinguish them. The population is supposed to b@gehildren which will form
the populatioriP’ of the next generation.

Each individual is characterized by its genome. To fix the ideas, we shall admit that a
genome is a binary sequence composed afonomers. It can be represented by a vector
x = {x5x% ..., x% ..., x"} with x* € {=1, +1} (1 < « < v) belonging to the sequence
spaceX’. This setX’ of all distinct sequences contains 2 elements.

We shall noteG the set of genomes of all individuals belonging7o G = {x;|1 <
i < N} e XN wherex; is the genome of individual of the population.G is the gene pool
of P (Maynard Smith 1983). Hereafter quantities with a prime (suckasre related to
the offspring populatior?’, while quantities without a prime (ag;) concern the parental
population?P.

Let us introduce the probabilitW (G’, G) to get the gene pod’ = {x!|1 < i < N}, if
one generation earlier the pool wgs We have obviously

> W@ g =1
G'exN
where the sum is taken over all possible poGls W(G', G) describes the reproduction
of the population; it takes care of effects such as selective advantages of some genotypes
compared with others, or of mutations occurring during the replication of the genomes. We
restrict ourselves to time-independéd#it(g’, G).
By using W(G', G), it is possible to calculate the probabilit®(G’, r + 1) of having
the poolG’ at generationr + 1 if the probability P(G, ¢) of observingG at generatior is
known:

PG 1+ =) WG, 9PG0. (1
GeXxN
Let F(G) be an arbitrary function of. We define the following two quantities:
F()= Y PG,0OF ) )
GexN
(F)G) =Y WG.DF@G). ©)

G'exN
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F(t) corresponds to thaverage valueof F on a population at generation Similarly,
(F)(G) is theexpected valuef F estimated on a population if, one generation earlier, the
gene pool wasj. By using (1)—(3), we see that

F(t+1) = (F)@). (4)

If the system reaches a stationary state (whe¢g,: + 1) = P(G, 1)), then the preceding
relation leads to:

F(t) = (F)(@). %)

GivenW (G, G), this relation enables us to evaluate the average value of any furficton
Now let us precise the form oV (G’, G). The evolution of the population is given by
the link between two successive generations. We make the following hypotheses which are
close to those used by Serva and Peliti (1991).
e At each generation, the population is formed Byindividuals.
e Successive generations do not overlap: all parents die before their offspring reproduce.
e Let G be the parental pool and’ be the offspring pool. The offspring population
is obtained from the parental one By independent reproduction events. Consequently,
W(G', G) can be decomposed as

N

WG, 6) =[]w) 9 6)

j=1

wherew(z’, G) is the probability that the individual belonging toP’ gets the genome;
if the parental gene pool wag. Of course thew(z}, G) are normalized:

> w),6) =1 (7)

!
w/.EX

In order to specifyw(x’, G) more precisely, we consider for instance an asexual reproduction
mode of a haploid specigs

Let us suppose that a given fitnesge) > 0 is associated to each genotypes X': an
individual with genotyper is expected to begei(x) children. So, if we calb(2’, x) the
probability to get the genome’ as a copy (with eventual mutations) #f we have

N
- S(xiv(x', ;) (8)
Zj]‘v:l S(x;) ;

since theN possibilities of drawing a particular parent (1 < i < N) are mutually
exclusive events. The probabilitiesx’, x) verify the normalization relation

Z v, x) =1

x'eX

w(@', §) =

The decomposition (6) oW (G’, G) has a practical interest. Consider a functibr;,)
depending on the genome, of a single individual.. The average valuér)(G) is given

by
(F)G) = > w(x}, G)F(®}). (9)

7
T, eX

1 As noticed by Kimura (1962), under certain conditions such a gene pool model also describes sexually
reproducing populations. Similarly, the very same model can also be applied to haploid as to polyploid populations.
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More generally, ifF depends on the genomes,, x,, ... x;,, with & distinct but arbitrarily
chosen indiceg,...,Ax. The average valuéF)(G) is then given by

k
(FYG =Y > > ( w(a;;u,g)>F(m;1,...,m;k). (10)
a=1

w;leX m;zEX w;k ex

Equations (5) and (10) form the core of the method used here. It is possible to evaluate
the time evolution of any function if the transition probabilitiesz, G) are known.

3. Evolution in the presence of selective advantage

Let us now apply the previous formalism to the evolution of a populgioof N haploid
individuals reproducing asexually. We suppose that the different genomes can be sorted in
two classes: the fertile and the sterile (or lethal) ones and we assume that both are uniformly
distributed in the sequence space. To take this into account, we characterize once for all
(quenched disorder) each genotypes X by the value of a fertility functionf (x) in the
following way:

1 (for fertile) with probability p

f@) = 0 (for sterile) with probability - p.

(See also Peliti and Bastolla (1994)). A second element is directly inspired from Eigen’s
models. We shall assume that the genotype (1,...,1) has a selective advantage
compared with all other genotypesi. Naturally, /(1) = 1 (it would be nonsense to give

a selective advantage to a lethal genotype). Given the parental popuRtitre possible
values that the genome; of an arbitrary individual belonging to the offspring population
P’ are enumerated below with their respective probabilities:

zi o, (L= 1)
M. x: f(zi) m
;]3]’ _ asi nf:;sn,, (11)
l anrgn,, (1 - 'b“))
Mal nf{:lgn(,'u’

with 1 < i < N. The various terms appearing therein will be explained below. For each
monomerx? of x;, there is a small probability. to be badly copied. We assume here that
w is small enough so the eventuality of multiple errors during the replicatian cén be
neglected. M, x; corresponds to the genome obtained by making a single mutatien in
at positiona € {1, ..., v} during its replication. The probabilities listed in (11) correspond
to the termS(x;)v(x’, x;) appearing in (8). The probability to draw a sterile individual is
zero.

In expression (11)zs corresponds to the number of fertile individuals in the parental
population and:, to the number of parents with genotyfie By definition,n, andn, are
respectively equal to

N N
np=> f(x) and ne=y 8z —1)
i=1 i=1
where

S(x—1) = ]1[5;“’.
a=1
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5{“ is the Kronecker delta. Equation (11) only makes sensg it 0, which means that
there is at least one fertile individual in the parental population; if this was not the case,
the population would become extinct.

By assuming that the population has reached a dynamical equilibrium, one determines
without difficulties the mean number; of fertile individuals andz,, the mean number of
individuals bearing the genomic sequerice:; andn, are solutions of

(np)(@) =nys(t) and (no) (1) =n,(1).

Neglecting back-mutations oh and fluctuations for the calculus af,, the solutions of
these equations are respectively

ny=N[1-1-p)uv] (12)
s+ p .
N{1- f o= 5
e O LT (13)
0 otherwise.

The solution for, shows that, according to the mutation ratethe population dynamics
presents essentially two distinct behaviours.

o lf u < u. =s/(w(s + p)), there are, on average, > 0 individuals belonging to
the master typd. We shall see hereafter that the whole population, although submitted to
genetic drift, remains localized in the sequence space in the neighbourhdod of

e For u > u., the mutational load is so heavy that the genotypdespite its selective
advantage, disappears;lifappears by chance, it will vanish some generations later, so that
n, =01if u > u.

The mean fitnesg,, of the population is defined by:

1 N
for= 5y DI+ (@i = DIf (o).
i=1

Using (12) and (13), one obtains for its average

— A+s5)A— pv) ifu<uc=m
"l - a-pyuy] otherwise.

f» is a continuous and decreasing functionof If © < u., f, does not depend on
the fractionp of fertile genotypes: the decrease of mean fitness due to the presence of
sterile individuals is exactly compensated by the increasg, afue to the existence of fitter
individuals with genotypd. This result, although surprising, is common, see Higgs (1994)
for other examples. The presence of lethal genotypes has another important consequence: it
increases the value ¢f., allowing larger mutation rates in the population without affecting
S

To study the change in the population dynamics aroupdwe have calculated the
average variance? of the population and the mean square skifh X)2) of the mean
genotypeX = (1/N) Z,N:l x; between two successive generations. To determine these
quantities, we shall need the average values of the following five teyms;, > f(x;)x;,
Yxix;, Y f(z)xx; and ) f(x;) f(x;)x;x;. Detailed calculations will only be given
for the first two expressions; the other ones are found by using similar reasoning. Let us
start with two remarks.
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e As written above, the fertile genotypes are uniformly distributed with frequenty
the sequence space. So, a term like
Z S Myxj)Myx;
a=1
which will often appear in the calculations can be approximated by its mean value on the
phase space (as if we were in the presence of annealed disorder):

Z fMyxj)Myx; ~ (v — 2) px;.

a=1
This approximation is good as long ap > 1 (v is the number of first neighbours of an
arbitrary sequence in X andvp corresponds to the average number of fertile neighbours
of x). If vp < 1, this approximation becomes doubtful.

e We shall also estimate the fluctuationsrgf andn, by evaluating the variances of
these two quantities. We obtain that fiof the fluctuations are of ordeyN. For n, the
calculations are more delicate. Supposing that the fluctuations are small compareg, with
we obtain that they are also of ordefN. Thus, with the assumption that is sufficiently
large, we can considet; andn, as constants whose values are given by (12) and (13)
respectively. Hereafter, we shall writg instead ofn; andn, rather tham, in order to
simplify the notations. The most visible finite-size effect is the shift of the error threshold.
Indeed a population with, of order+/N is likely to escape from the master genotypim
few generations. Consequently, we deduce from (13) hatas to be replaced hy.(N)
determined by

Cuc

VN

where C is a constant. On the other hand, numerical simulations show that the lifetime

of a master population with, of order N increases exponentially witlv, so it is very

improbable to observe any extinction during one experiment. This is why one is justified

to talk of an error threshold despite the finiteness of the lifetime of the master sequence.
So, let us begin with the evaluation of the average valug of (z;)x;. The transition

probabilities are given by (11).

<Zf(m>w> Zn jsnog[u ) f (@)

+MZ f(Mzp)Myx)] - (L4 s8(x; — 1)) - f ()
a=1

— 2uN N
= ”-I‘“P[mol +y f(:c,):c,}.
j=1

nyg +sn,

Me(N) = pe —

By using (5), one obtains the average value of this quantity:

2uNp
Z fx)z; = pon + ZMNpsnol.

We have also for each

1-2
(x}) = (ad [sn01+ Zf(:cj)a:j] (14)

ng+sn, ]
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from which we deduce that
N N
_ A-2w)N e
1 N |.
doa= o [n +;f($/)wj]

Let us now give, with less details, the derivation of the average value of
Y f(x) f(x))xix;:

<ZZf(:B ) f @)z >=vnf+N(N_1)

i=1 j=

N
{Z[(l ) f (@) +qu(M 1) Ma a:]

i=1
y 1+ s8(x; — 1) f (i) }
ng+sn,

N—-1/(n;—2uNp 2
N nf + sn,

=vny +

N N
[ n U+2sn,,1z fa@pmi+y ) f(wi)f(wj)mfmj]-

i=1 j=1

Using this result and equation (5), one gets:

2
VNng + (N = D) (22 ) (14 22200 ) 5202y

NN ny+sn, sno+2uNp
ZZf(fﬂi)f(iﬂj)wifBj = 2
i=1 j= _ _ ny—2uNp

i N = (N =D (")
On the same scheme, one evaluates the two remaining quantities:
N N

I — 1-2u)(ny — 2uN
Y Fww, = g v 200 = 2uNp)
i—1 j=1 (ng +sn,)
[ v+ 2sn,,12 f@z; + Z Z f@) f (@) w,]
i=1 i=1 j=1

N N 1-2u 2
Y > @mm=vN+NN -1
i=1 j=1 nf A Sno

N N N
X |:s2n§v + 2sn012 Sfx)z; + Z Z]WW]

i=1 i=1 j=1

With these results, there is no difficulty in evaluatifigh X)2) ando2. The mean square

shift is equal to the average of the expected value of the squared difference between the
mean genotypeX’ of the offspring population and the mean genotyleof the parental

one:

(AX)?) = (X' = X)?).
By expanding the right-hand side of this expression, we have:

N N N N

1 N N
(AX)?) = NZ[ (@]x)) — 2 —I-ZZac,-a:j].

i=1 j=1 i=1 j:l i=1 j=1
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By using

N N

2D f(wia)) = Nv+ ) (@) (@)

i=1 j=1 i#]
and (14), we obtain an expression f@A X)2) in which all terms have been calculated
above. Since the mathematical expression of this result is rather long, we do not give it
explicitly here; however, in the absence of selective advantage@) and in the situation

p =1, {((AX)3?) is given by:
TN 4uv

AX)2) = . 15
((AX)7) N—(N—D-2u)7? (15)
The value ofo? is calculated in the same way:

o N
02 = N2 (x; — X)?

=v—X2

=V — ﬁ Z Z(l?,’il?j.

i=1 j=1
In the simple case = 0 andp = 1, one finds:

02 =(N - DL - w{AX)?). (16)

For an exhaustive study of this simple case see Higgs and Derrida (1991, 1992) and Derrida
and Peliti (1991).

The results are presented in figure 1. It can be observed in fighyehit the genomic
variance remains tiny fon < u.: the mean genotype remains confined in a small region
of the sequence spack, in the vicinity of the master genotypk the genotypes present
in the population are slightly dispersed arouhdMoreover, the mutation rate being small,
the mean square shiftA X)?2) is also small (see figure &)).

For u > pu., the behaviour is very different. The dominant genotypds no
longer represented in the population; as a consequence, the genomic distribution broadens;
however, the genomes remain localized in a small portion of the sequence space. Between
two successive generations, there is an important random drift of the meanXatdi¢he
genotype in sequence space: the mean genotype wanders the sequenc¥.sphie is
illustrated in figure 1€). Figure 2 present§ A X)2) ando? versus the fractionp of fertile
genotypes inX.

The change of dynamical behaviour aroupd is closely related to Eigen’s error
threshold. In Eigen’s model, fon < u., the concentration of the various sequences are
notably higher than zero only for sequences close to the fittest one (the master sequence) and
the stationary distribution of frequencies is called the quasispecies; we have the very same
behaviour in the present example. For> ., Eigen’s model predicts a homogeneous
state: all sequences are equally represented in the system; our model predigts; far,
that the population remains grouped in the sequence space around the mean g&hotype
but that the latter one wanders the sequence spacén this respect, the present model
corrects the unrealistic behaviour of Eigen’s model mentioned in the introduction.

As can be seen in figure 1, the predicted curves fit the numerical data well, except in the
transition region around.. Foru ~ u., the fluctuations of,, can no longer be neglected as
was done in the derivation of (13). This explains why the theoretically predicted threshold
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(a) <(AX)2>
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Figure 1. The evolution of N = 200 individuals is simulated. The genomes are built up with
v = 30 monomers; each monomer has a probability be badly copied during the duplication

of the genome. The fraction of fertile genotypewis= 0.8 and the genotypé has a selective
advantage off = 2. Graph 4) is a plot of ((AX)?), the mean square shift of the mean
genotype between two successive generations, versuin (b), the average variance? is
plotted as a function ofi. (c) The average Hamming distandebetween the mean genotype
X and the favoured genotydeas a function ofu; for large values of:, the average Hamming
distance saturates af2. Dots correspond to numerical data, while the full curves represent the
theoretical results.

overestimates... Another deviation between theoretical and numerical results can be seen
in figure 2: for small values op, the analytical prediction of(A X)2) becomes bad. This

is mainly due to the following reason. Each genotypeithasv nearest neighbours among
which, on averageyp are fertile genotypes. If the average number of fertile neighbours
becomes too small, fluctuations of the local density of fertile genotypes—rwhich are
neglected in our ‘mean-field’ approach—begin to play an important role. It is, however,
possible to improve the theoretical results for small valuegp dfy specifying explicitly

the distribution of fertile and sterile genotypes around the favoured gendtypéie next
section is devoted to the study of this particular case.
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Figure 2. A system of N = 200 individuals with genomes of length= 20 is simulated. The
mutation rate is equal tp = 0.0465 and the genotypk has a selective advantage sof= 10.

Graph @) is a plot of the mean square shift of the mean genotype between two successive
generations as a function of the fractignof fertile genotypes in the sequence spéce In

(b), the variance is plotted versys Dots correspond to numerical data, while the continuous
lines correspond to theoretical results. Due to the large value thie theoretical value for the
critical mutation rateu. agrees fairly well with the one obtained numerically.

4. The smallp limit

For small values ofp, the quenched disorder is explicitly taken into account in the
calculations. We consider, in sequence spageonly the neighbourhood of the master
genotype. The population evolves according to the following rules:

1 ﬂ%) (1— pv)
M,1 ey,
ZC, — n,:—)snu (17)
‘/)“ 11/v+$'11() (1 - I’LV)
M‘)“/)‘ nfi)\sn,,u'
In this expressiony, for A = 1,..., A < v are the genotype of tha first neighbours of

1 which are fertile. The population d¥, is denoted bys,. The draw of another fertile
seqguence is not taken into account since it is assumed that its population is negligible.
Evidently, it is possible to refine the model by considering them. We make the additional
assumption that, for all, n;, = n. The study of this model follows the same lines as the
preceding one. Thus, we begin by calculating the average quaniities: andn in the

large ¢ limit. Neglecting fluctuations in the relationg, = (n,), n = (n) and using the
definition ofns lead to the equations:

n,(ny + si,) = N[(L+5)(1 — uv)n, + pAn]

n(ay + sn,) = N[(1— pv)i + (14 s)uAn,) (18)

ny =n,+ An.
Back-mutations o are no longer neglected. These equations are easily solved in the large
v limit remembering that\ is at most of ordep. The solution writes (foyx small enough):

np =N — v+ Ap)
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1
m:N(l—,uv—Au)
s

1+s
s

n=N .
The mean fitness takes, on average, the same vAjue= (1 + s)(1 — uv) as in the
former model. We neglect fluctuations of the populations in (17) by considering that they
always take their mean values. The calculation of the quantities which deserve mention is
straightforward since we have simply (no bar has been omitted):

A
(@) = 75 = (1— 2u) <1—2”> 1 (19)
v ng+sn,

The value of the moment;z; is easily obtained:

A 2 .
(1—2M)2<1—2”) if i £ j

v nyg+sn,
v otherwise.

T;Tj =

Relation (19) between the average and expected values implies that the expression for

((AX)?) simplifies to:

(AX)?) = %(v — T172).

In the largev limit, we obtain finally:

————  8uv 8uA
2y
((AX)?) = N + Ns(L— o) (20)
and
— N-1—
2 _ 2
0?2 = N ((AX)?).

It remains to take the average over the disorder. For instance, it consists of replacing
with pv in (20). The conclusion is that we can commute the average over the disorder
with the other averages, but it is only trueas> 1. This validates the annealed disorder
approximation in the former model. Numerical simulations confirm the validity of this
approach, see figure 3 for an illustration.

5. Discussion

We have presented a method allowing us to calculate the time evolution of a population
in the presence of selective advantage, sterile genotypes and mutations. This formalism
can be viewed as an extension of Kimura's diffusion models. The population dynamics
obtained with this approach are close to the one observed in Eigen’'s system of self-
replicating macromolecules. There exists a critical valefor the mutation rateu; its
value u. = s/v(s + p) depends essentially on two parameters: the selective advantage
of the favoured genotype and the fractiprof fertile genotypes in sequence space. For a
small selective advantage the existence of sterile sites increases considerably the value
of ..

If u < u, the population remains confined in the neighbourhood of the genome having
the highest selective advantage;uif> ., the population no longer remains fixed, but
wanders the sequence space. In opposition to what happens in Eigen’s system (where
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Figure 3. Comparison of numerical computations with theoretical results for a system with
selective advantage and strong quenched disorder. The evolution of a population composed of
N = 10* (chosen large enough in order to limit the effect of the fluctuations) individuals is
simulated. The genomes are formedwot= 25 monomers. The genotygehas a selective
advantage of = 0.2. Each monomer has a probability= 0.02 to be badly copied during the
duplication of the genome. This graph is a plot of the average valug/X)?2) over many
experiments as a function gf. Dots correspond to numerical data obtained by simulating a

population obeying the rules defined in (17); the full curve corresponds to the theoretical result.

the system becomes homogeneoug it~ u.), the wandering population always keeps a
structure: due to the reproduction mode, all individuals remain grouped in sequence space.

Finally, we have also shown that the study in the case of quenched disorder can be done
as if we were in the presence of annealed disorder, at leasisakrge enough.
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